Ax + By + Cz = D ………… (i)
Ex + Fy + Gz = H …………(ii)
Px + Qy + Rz = S ………… (iii)
Eliminasi persamaan (i) dan (ii)
Ax + By + Cz = D xG AGx + BGy + CGz = DG
Ex + Fy + Gz = H xC ECx + FCy + GCz = HC -
(AG – EC)x + (BG – FC)y = DG – HC ............ (4)
Eliminasi persamaan (i) dan (iii)
Ax + By + Cz = D xR ARx + BRy + CRz = DR
Px + Qy + Rz = S xC PCx + QCy + RCz = SC -
(AR – PC)x + (BR – QC)y = DR – SC ............... (v)
Eliminasi persamaan (4) dan (5)
(AG – EC)x + (BG – FC)y = DG – HC x(BR-QC)
(AR – PC)x + (BR – QC)y = DR – SC x(BG-FC)
(AG – EC)(BR-QC)x + (BG – FC)(BR-QC)y = (DG – HC)(BR-QC)
(AR – PC)(BG-FC)x + (BR – QC)(BG-FC)y = (DR – SC)(BG-FC) -
[(AG – EC)(BR-QC) – (AR – PC)(BG-FC)]x = (DG – HC)(BR-QC)
x = (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC)]
Masukkan nilai x ke persamaan (iv) atau (v)
misalnya ke persamaan (iv)
(AG – EC)x + (BG – FC)y = DG – HC
(AG – EC) (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC) + (BG – FC)y = DG-HC
y = (DG – HC)/ (BG – FC) - (AG – EC) (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG- FC) ] (BG – FC)
Masukkan nilai x dan y ke salah satu persamaan awal, persamaan (i), (ii),atau (iii)
misalnya ke persamaan (i)
Ax + By + Cz = D
A (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC)] + B (DG – HC)/ (BG – FC) - (AG – EC) (DG – HC)(BR-QC) / [(AG - EC) (BR-QC) – (AR – PC)(BG-FC) ] (BG – FC) + Cz = D
z = D/C - [A (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC)] + B ((DG – HC) / (BG – FC)) - (AG – EC) (DG – HC)(BR-QC) / [(AG - EC) (BR-QC) – (AR – PC)(BG-FC) ] (BG – FC)] /C
Jadi,
x = (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC)]
y = (DG – HC)/ (BG – FC) - (AG – EC) (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC) ] (BG – FC)
z = D/C - [A (DG – HC)(BR-QC) / [(AG – EC)(BR-QC) – (AR – PC)(BG-FC)] + B ((DG – HC) / (BG – FC)) - (AG – EC) (DG – HC)(BR-QC) / [(AG - EC) (BR-QC) – (AR – PC)(BG-FC) ] (BG – FC)] /C
0 komentar:
Posting Komentar